If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2=12c
We move all terms to the left:
c^2-(12c)=0
a = 1; b = -12; c = 0;
Δ = b2-4ac
Δ = -122-4·1·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12}{2*1}=\frac{0}{2} =0 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12}{2*1}=\frac{24}{2} =12 $
| 5(x)=-2(5)+5 | | X^2+300x-21,4000=0 | | 2+3y=-19 | | -3|x+2|=-9 | | -28+30u=422 | | 20.50=5x | | 10p-40=-48+2p | | u/23-(-87)=96 | | 8/3x+1/3x=62/3+7/3 | | 150m-100m+48,250=50,500-200m | | -45=-19+n | | -7/3(x)^2+2x+8=10 | | 8+5=a+a | | (x+20)(x+30)=336 | | a+8.1=-6.3 | | -7/3x^2+2x+8=10 | | 0(x)=-2(0)+5 | | 10-2x+6x=-26 | | -a=a-a | | 10u-3u=56 | | 20=-6b-4b | | -0=a | | 7x+4=56 | | 6g+8=7g+8=7g | | p-2.3=4.1 | | 6g+8=7g6g+8=7g | | 4x+10-7x=10 | | 6g+8=7g | | 6+2x+x=42 | | 20=-y/7 | | p+2.3=4.1 | | 93=180-i |